Behavioral Network Economics

A Cumulative Prospect Theoretic Perspective

Soham Phade

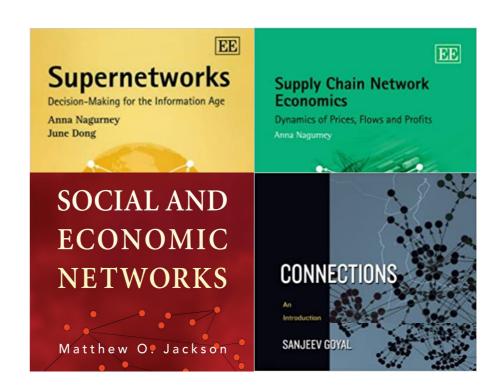
Dissertation Talk July 29, 2021

Network Economics

Study of problems where several agents interact with each other over a network with shared resources

Previous line of work

- Optimal routing: shortest path, TSP, min cost max flow
- Network formation and growth: random network models, spread of information and diseases, connectivity and segregation



Network Economics

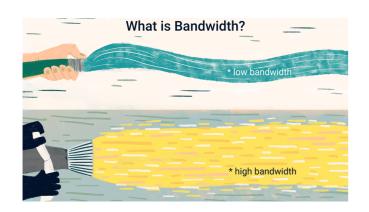
Study of problems where several agents interact with each other over a network with shared resources

An Emerging Paradigm

- Centralized control
- Direct-to-consumer services
- Increasing effect of human interactions and decisions
- Limited resources. Expanding the resources is not always possible

How to allocate resources over these networks while taking user behavior into account?

Network Economics Today

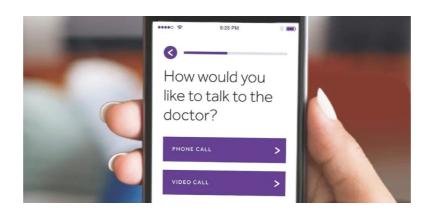


Broadband network

Cloud Computing

Smart Grid

Ad Auctions



Telemedicine

Labor Markets

How to incorporate human preferences?

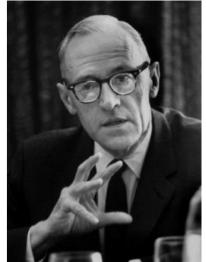
We seek market-based solutions e.g. auctions and fixed rate pricing.

This Talk

- Capture human behavior using sophisticated models from psychology
 - Tool: Cumulative Prospect Theory
- Build mathematical models to provide theoretical insights and facilitate automation
 - Network resource allocation model
 - Market-based mechanism and a pricing scheme
- Other Avenues:
 - Scheduling in Cloud Computing and Pricing
 - Mechanism Design
- Future Directions
 - Using ML/Al components as a part of these markets

Expected Utility Theory (EUT)

(Von Neumann-Morgenstern 1947)

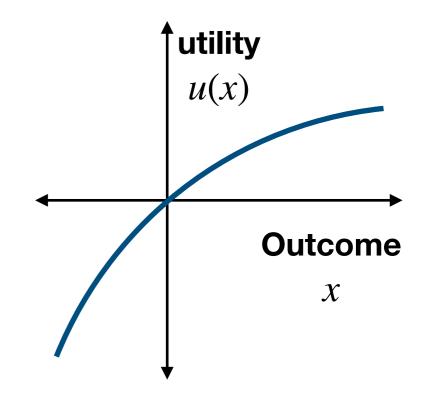


Lottery

Expected utility of lottery L

$$U(L) = 0.1u(10) + 0.2u(5) + 0.15u(2) + 0.1u(0) + 0.25u(-1) + 0.2u(-3)$$

Lottery with higher Expected Utility is preferred.



Utility function

Allais Paradox (1953)

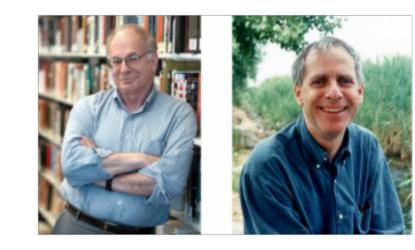
Allais

Experiment 1				
Gamble 1A		Gamble 1B		
Winnings	Chance	Winnings	Chance	
\$1 million	100%	\$1 million	89%	
		Nothing	1%	
		\$5 million	10%	

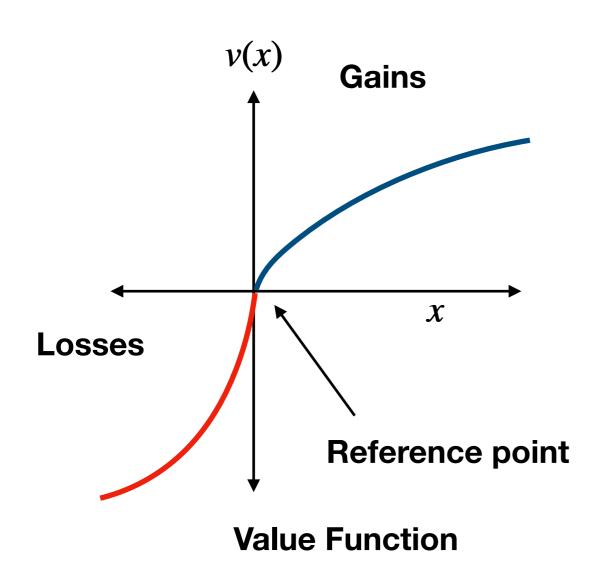
Experiment 2					
Gamble 2A		Gamble 2B			
Winnings	Chance	Winnings	Chance		
Nothing	89%	Nothing	90%		
\$1 million	11%				
		\$5 million	10%		

People often do NOT follow EUT!

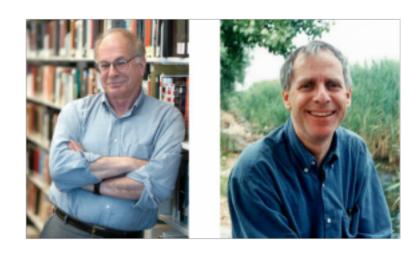
(Kahneman - Tversky 1992)

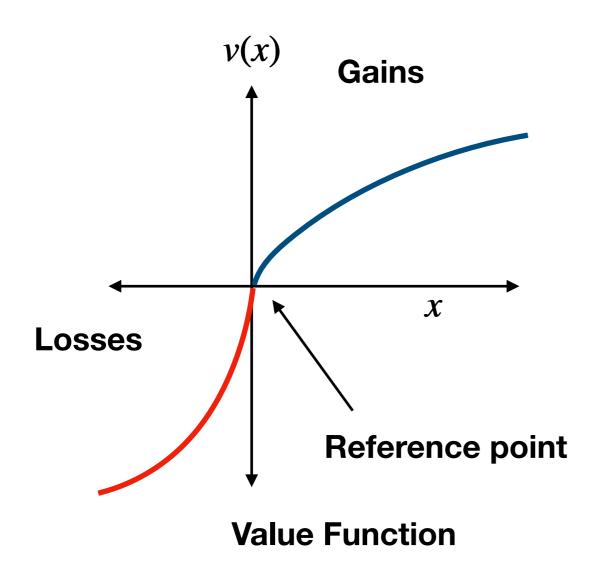


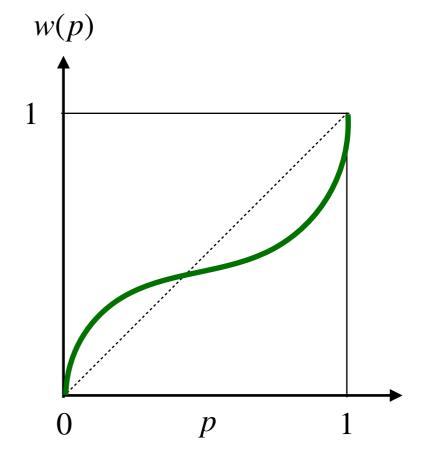
(Kahneman - Tversky 1992)



(Kahneman - Tversky 1992)

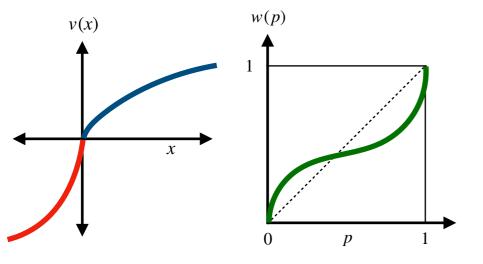


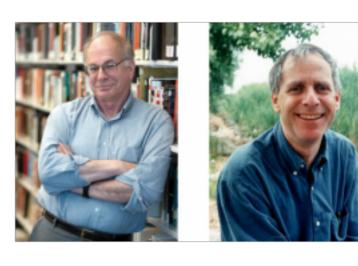




Probability Weighting Function

(Kahneman - Tversky 1992)





Loss

Suppose r = 0

Gain

		Gairi					
$\zeta =$	probability	0.1	0.2	0.15	0.1	0.25	0.2
	outcome	10	5	2	0	-1	-3

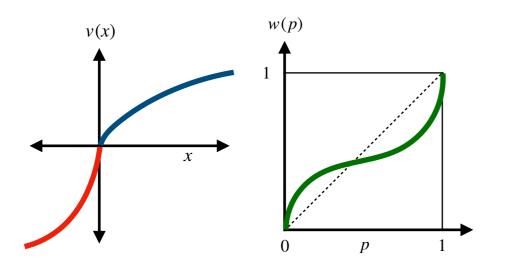
CPT value of Lottery L

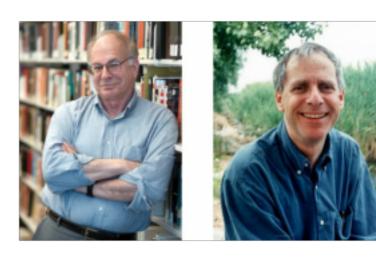
$$V(L) = V^{gain}(L) + V^{loss}(L)$$

$$V^{gain}(L) = v(10)[w^{+}(0.1)] + v(5)[w^{+}(0.1 + 0.2) - w^{+}(0.1)]$$
$$+ v(2)[w^{+}(0.1 + 0.2 + 0.15) - w^{+}(0.1 + 0.2)]$$

$$V^{loss}(L) = v(-3)[w^{-}(0.2)] + v(-1)[w^{-}(0.2 + 0.25) - w^{-}(0.2)]$$

(Kahneman - Tversky 1992)





Suppose r = 0

 Gain
 Loss

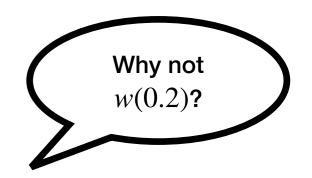
 probability
 0.1
 0.2
 0.15
 0.1
 0.25
 0.2

 outcome
 10
 5
 2
 0
 -1
 -3

First Order Stochastic Dominance Fails!

CPT value of Lottery L

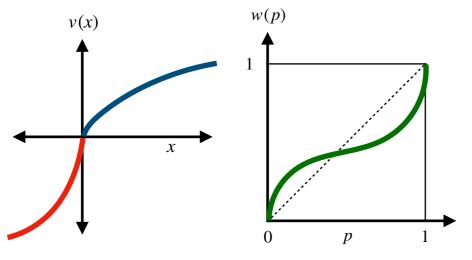
$$V(L) = V^{gain}(L) + V^{loss}(L)$$

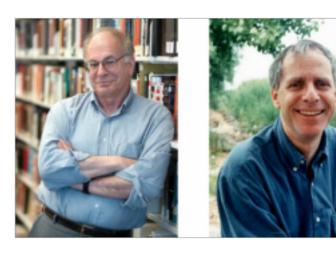


$$V^{gain}(L) = v(10)[w^{+}(0.1)] + v(5)[w^{+}(0.1 + 0.2) - w^{+}(0.1)] + v(2)[w^{+}(0.1 + 0.2 + 0.15) - w^{+}(0.1 + 0.2)]$$

$$V^{loss}(L) = v(-3)[w^{-}(0.2)] + v(-1)[w^{-}(0.2 + 0.25) - w^{-}(0.2)]$$

(Kahneman - Tversky 1992)





Suppose r = 0

 Gain
 Loss

 0.2
 0.15
 0.1
 0.25
 0.2

Rank Dependence Ordering in outcomes

Ordering in outcomes affects the corresponding decision weights

$$L =$$

probability	0.1	0.2	0.15	0.1	0.25	0.2
outcome	10	5	2	0	-1	-3

CPT value of Lottery L

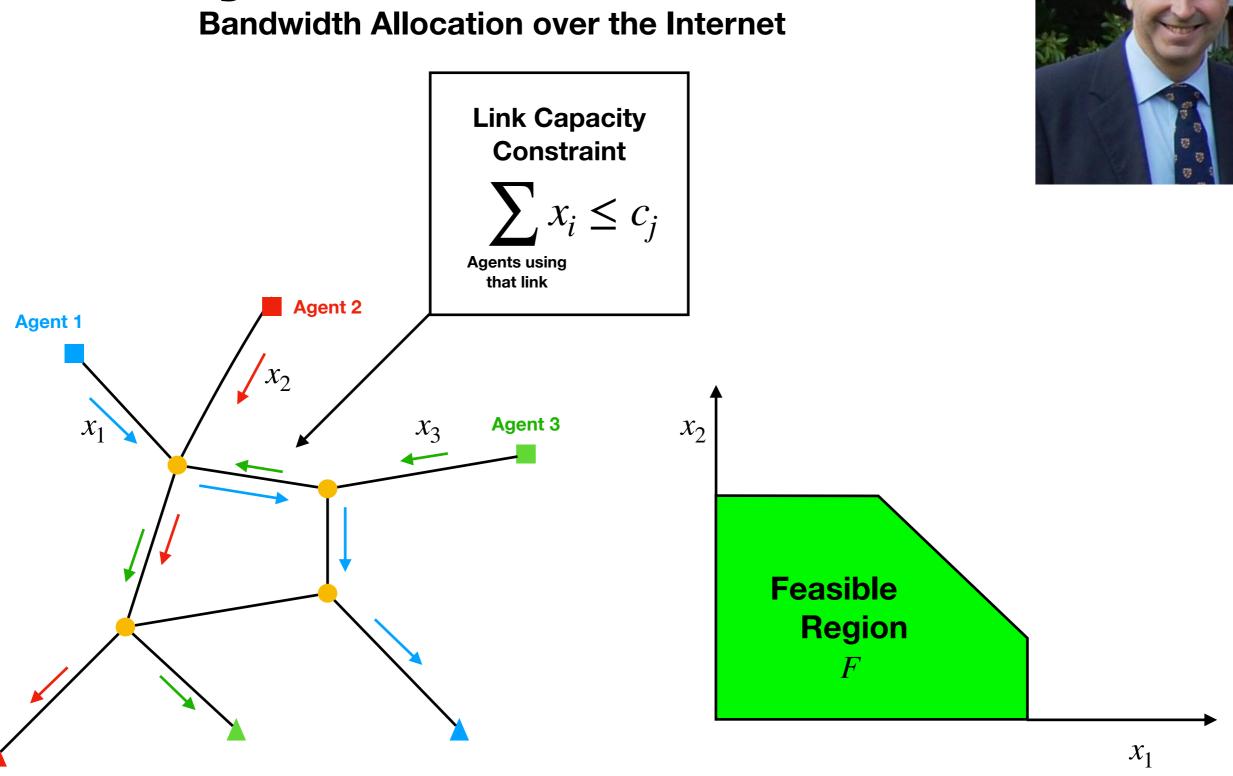
CPT generalizes **EUT!**

$$V(L) = V^{gain}(L) + V^{loss}(L)$$

$$V^{gain}(L) = v(10)[w^{+}(0.1)] + v(5)[w^{+}(0.1 + 0.2) - w^{+}(0.1)]$$
$$+ v(2)[w^{+}(0.1 + 0.2 + 0.15) - w^{+}(0.1 + 0.2)]$$

$$V^{loss}(L) = v(-3)[w^{-}(0.2)] + v(-1)[w^{-}(0.2 + 0.25) - w^{-}(0.2)]$$

Kelly Network Model

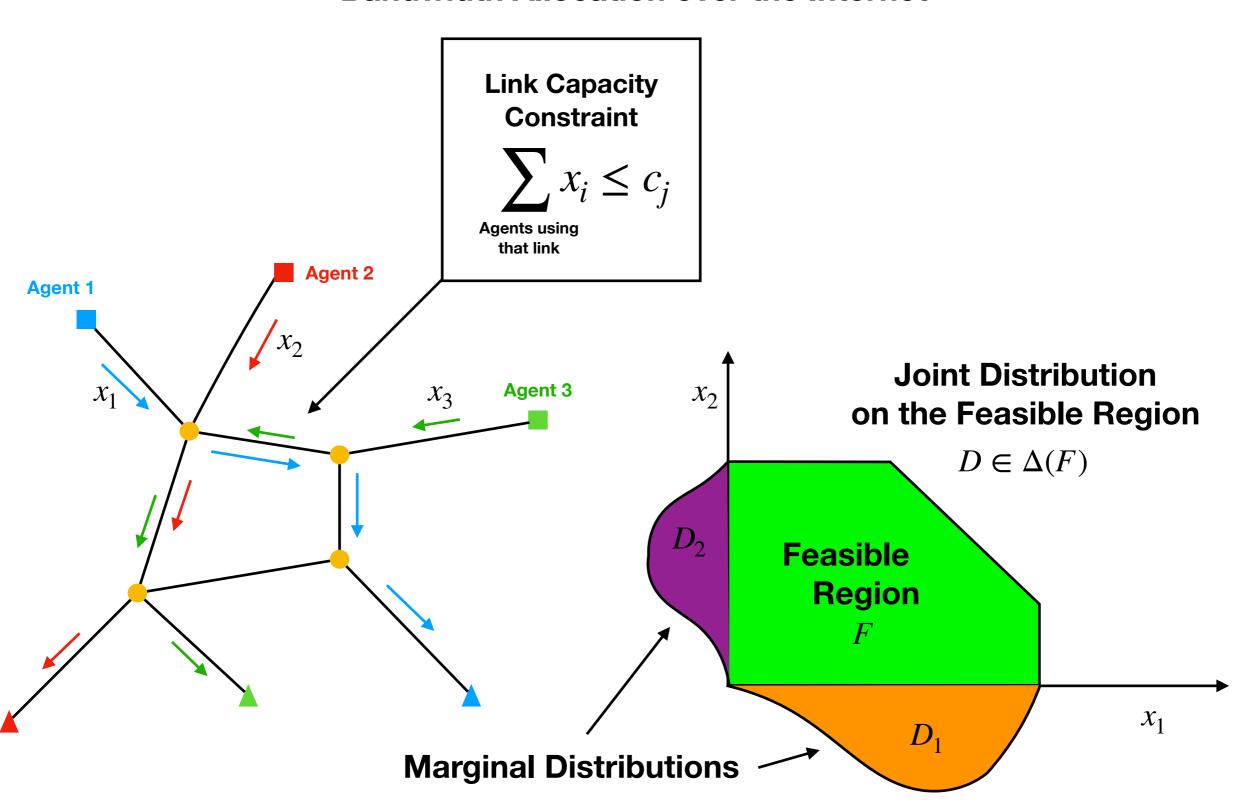


Deterministic vs Randomized Allocations

- This literature has mainly focused on deterministic allocations.
- Quality of Service has another very important aspect: uncertainty in the allocations
- Different users have different preferences towards uncertainty
- Do randomized allocations (lotteries) provide an advantage over deterministic allocations?
- If yes, does there exist a market-based mechanism to implement optimum lottery?

Network Model

Bandwidth Allocation over the Internet



System Problem

CPT value of Agent i's Lottery

- System Operator (like Comcast) does not know agent's CPT features, namely, the value function and the probability weighting function
- Goal: Design market-based mechanism to solve it.

System Problem

Deterministic

Maximize

$$\sum_{i} v_{i}(x_{i})$$

subject to

$$x \in F$$

Market-based solution (Kelly 1998)

- Convex optimization problem
- Facilitates decomposition of this problem into several agent problems and one system operator problem
- Underlies TCP/IP protocol
- Achieves optimum solution at equilibrium

Randomized

Maximize

$$\sum_{i} V_{i}(L_{i})$$

subject to

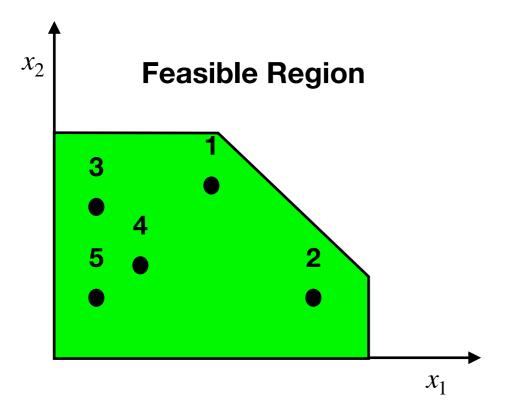
$$D \in \mathcal{P}(F)$$

$$D_i = L_i, \forall i$$

- Non-Convex because of prob. weight. func.
- Rank dependence introduces additional complexity

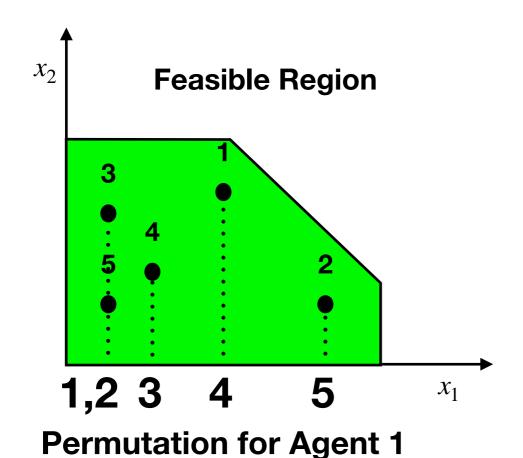
Discretization

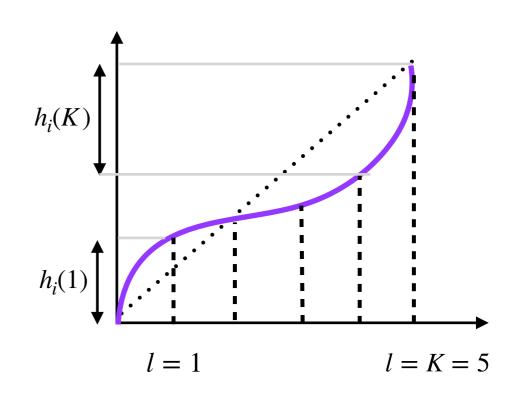
- A simplification that goes a long way ...
- Fix a positive integer K and discretize the joint distribution D into K alternatives, say, 1, 2, ..., l, ..., K.
- One alternative is chosen uniformly at random from these

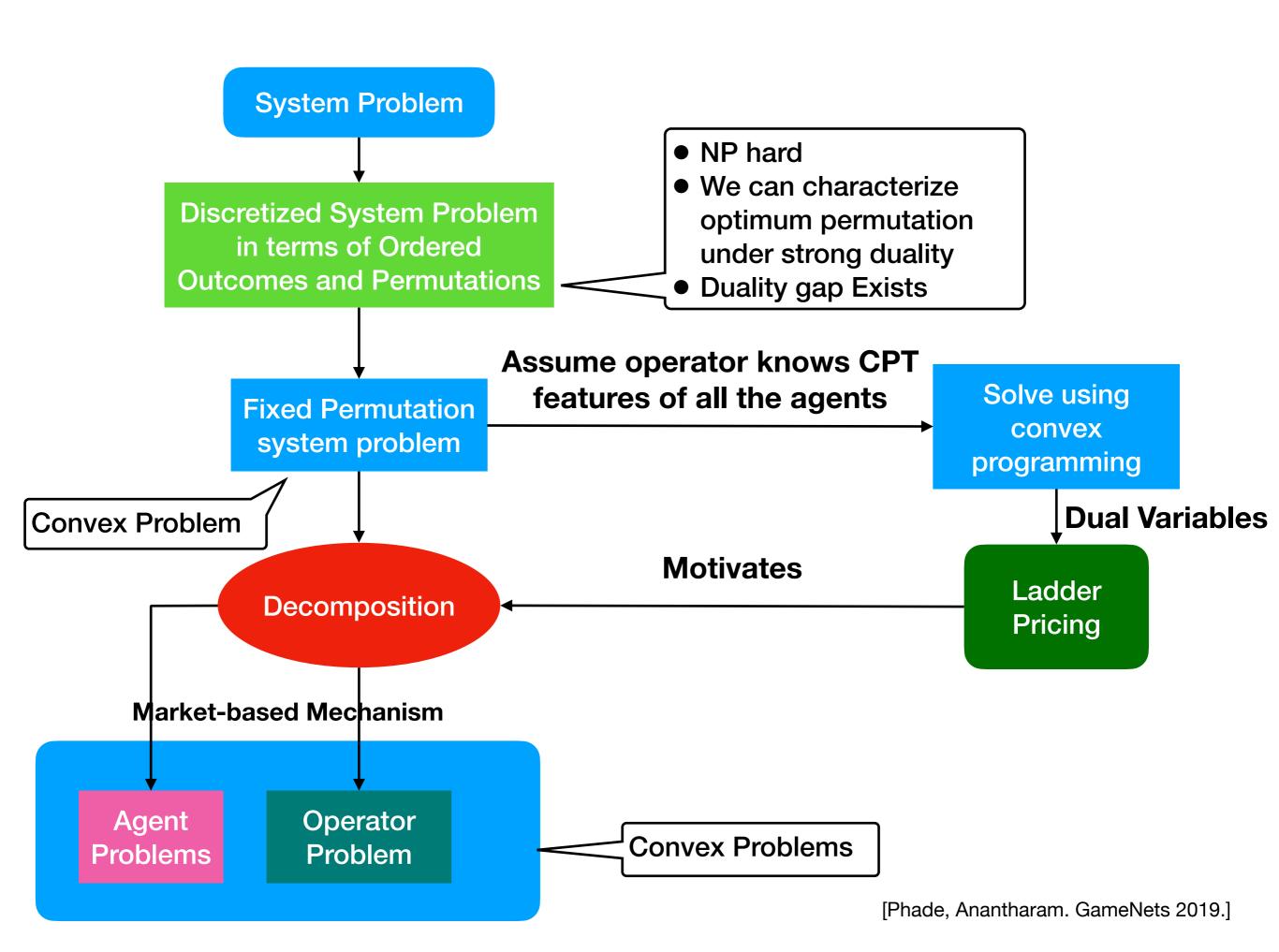


Discretization

- Restrict attention to probability weighting jumps
- Separate the permutation structure in the problem

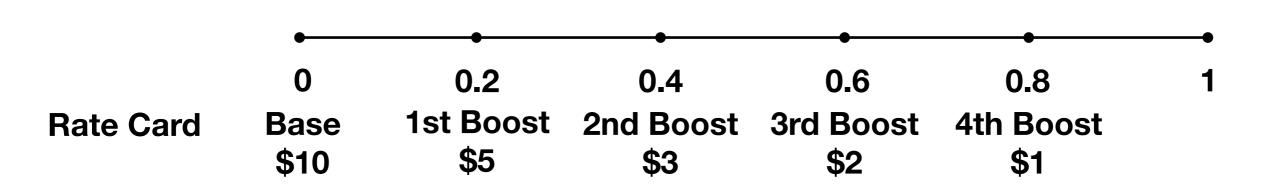






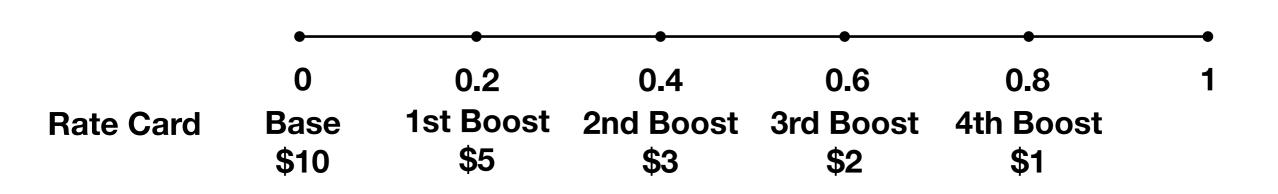
Budget Order

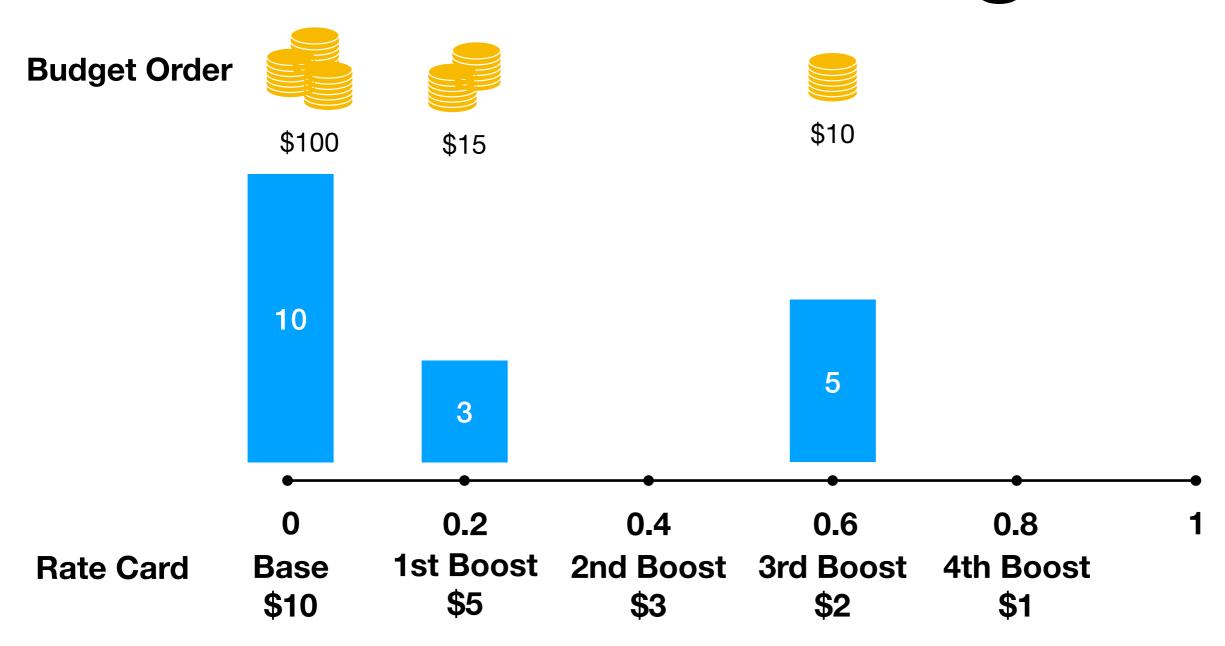
Place Your Order Here

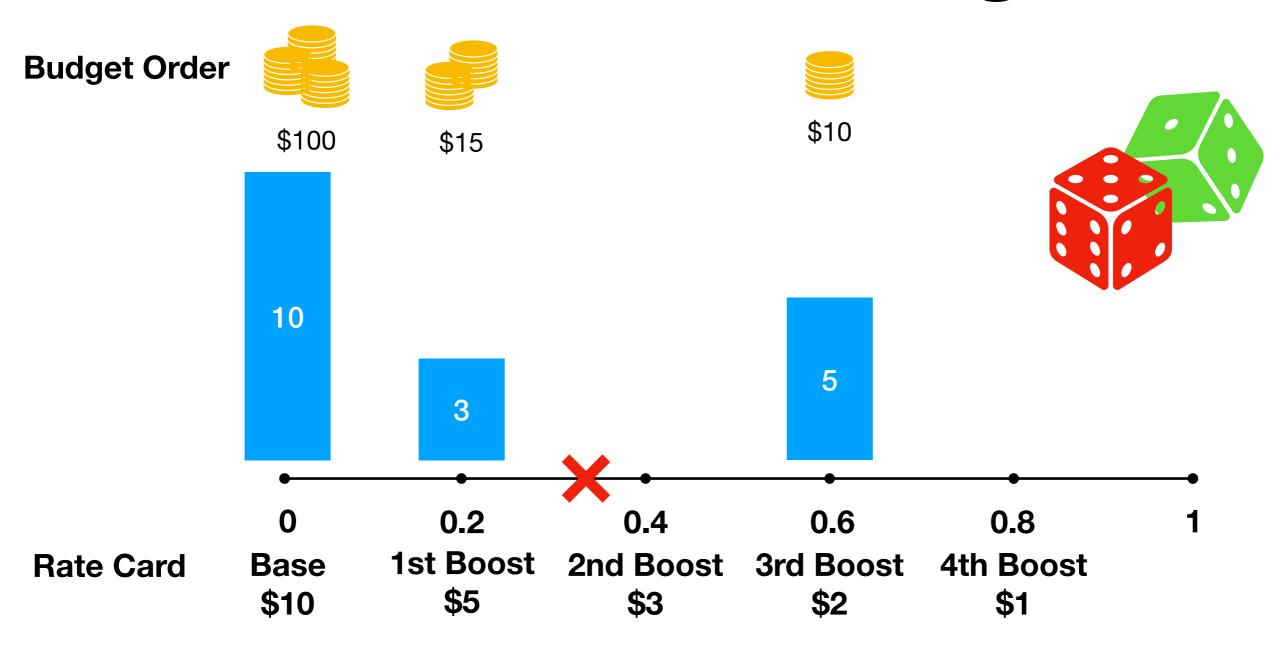


Budget Order

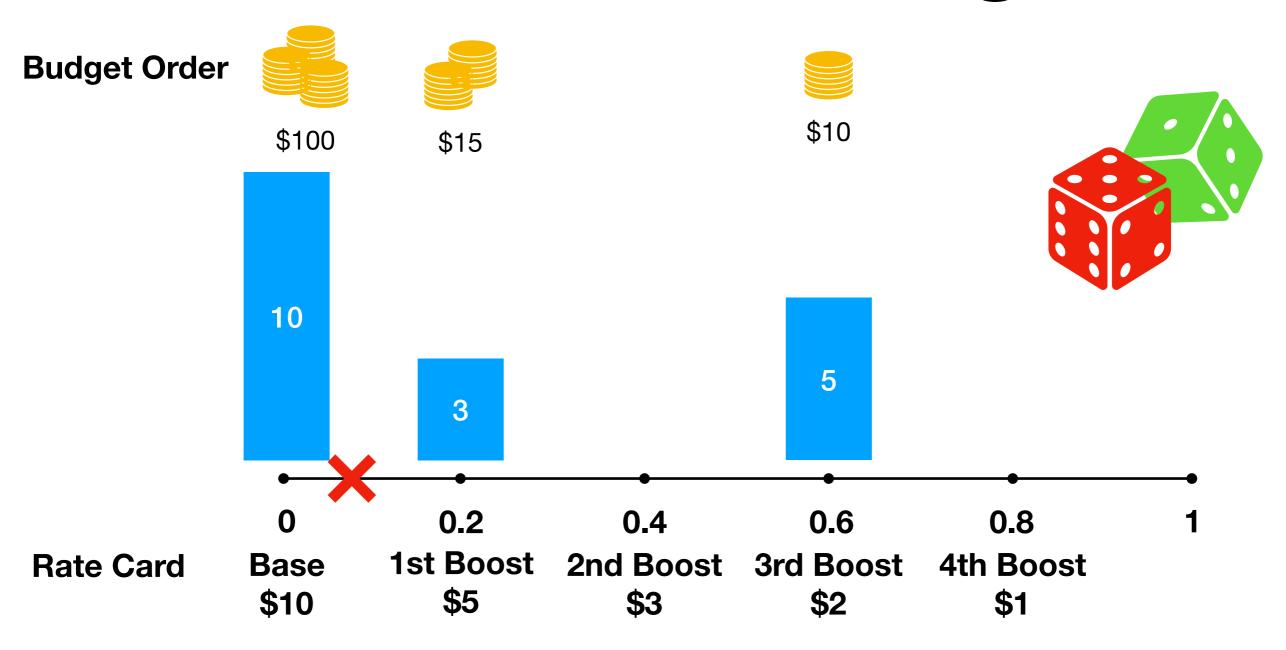
\$10



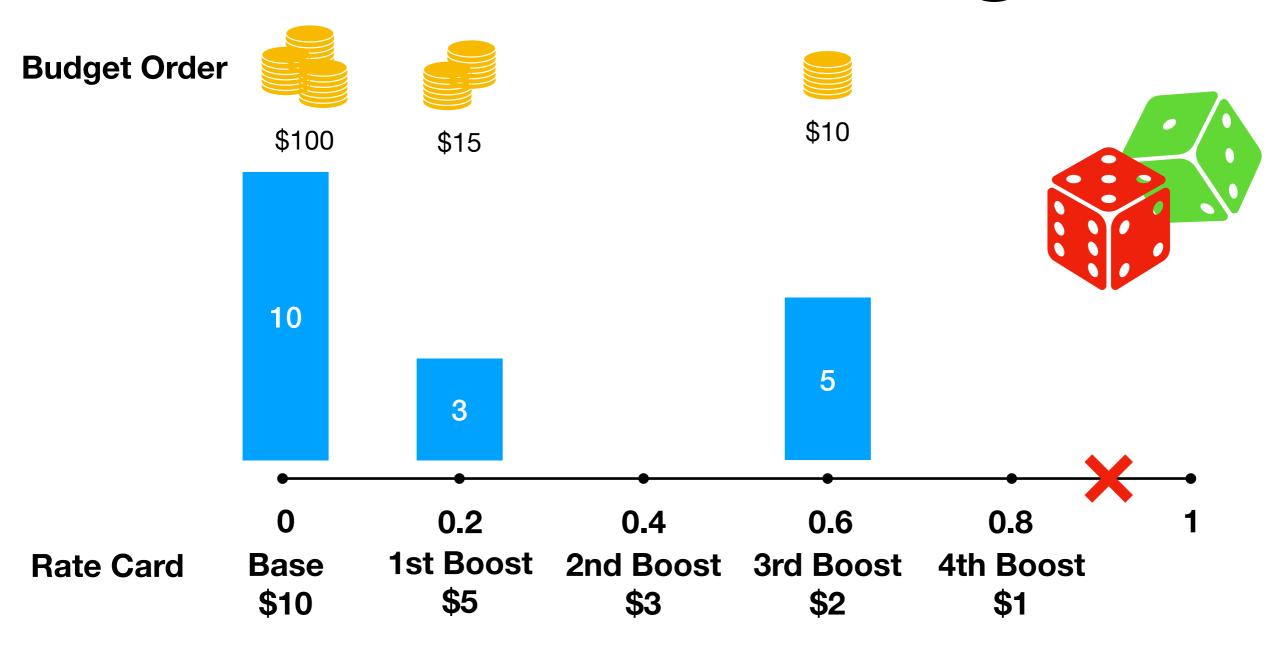




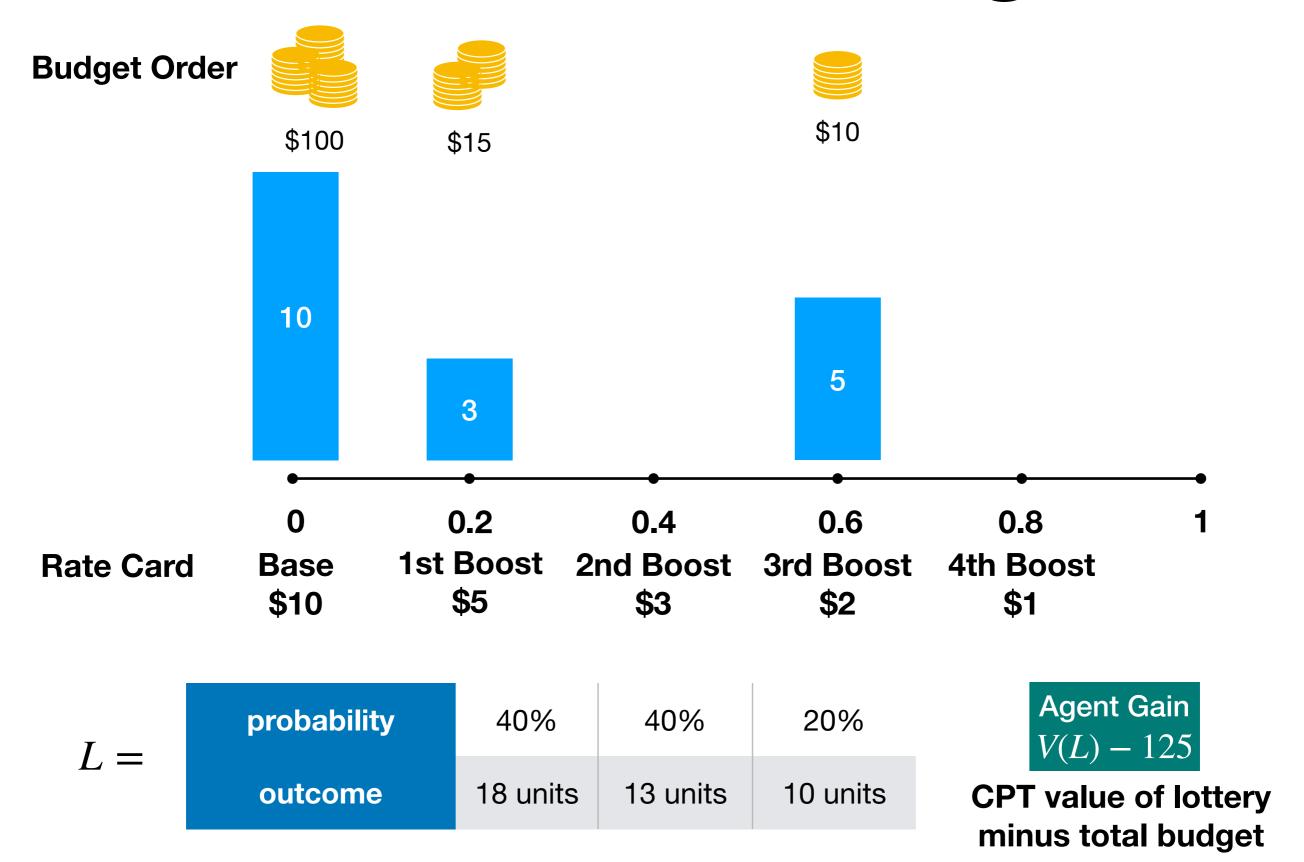
You get 13 units of bandwidth

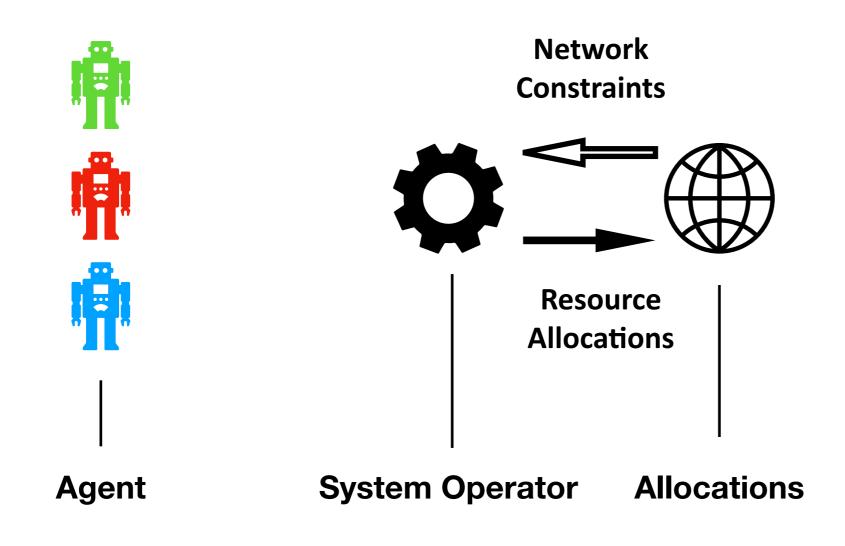


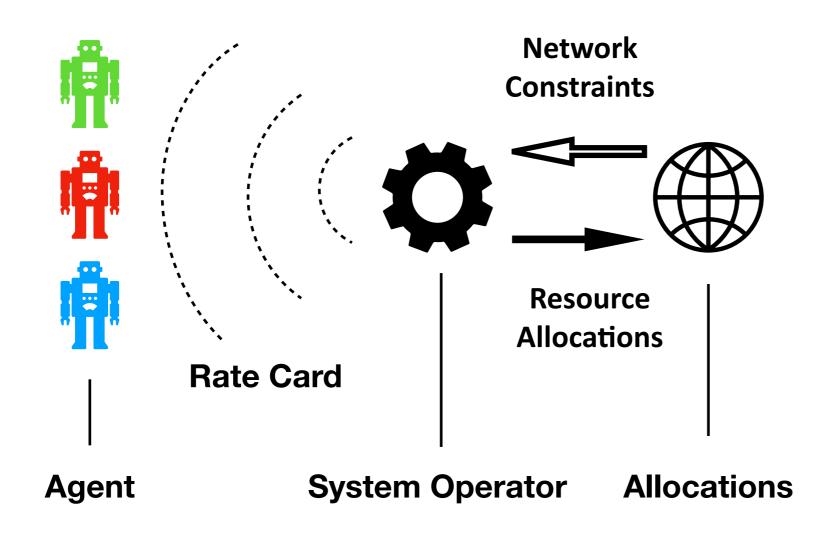
You get 10 units of bandwidth

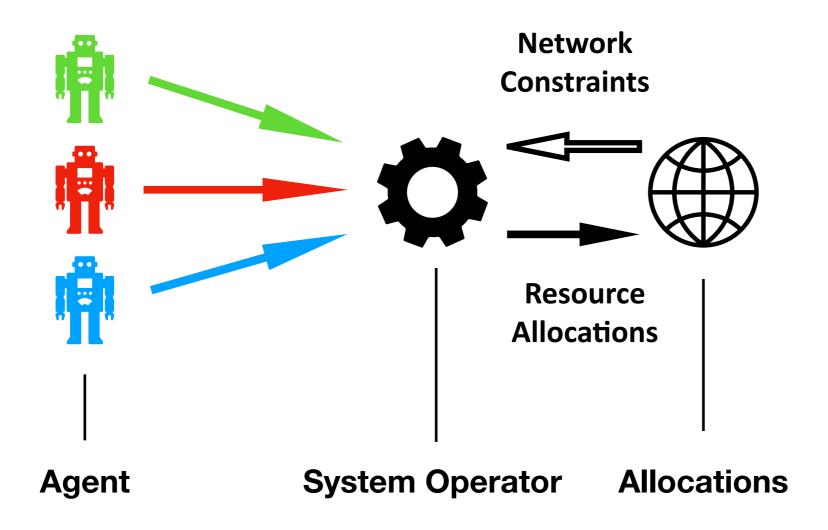


You get 18 units of bandwidth

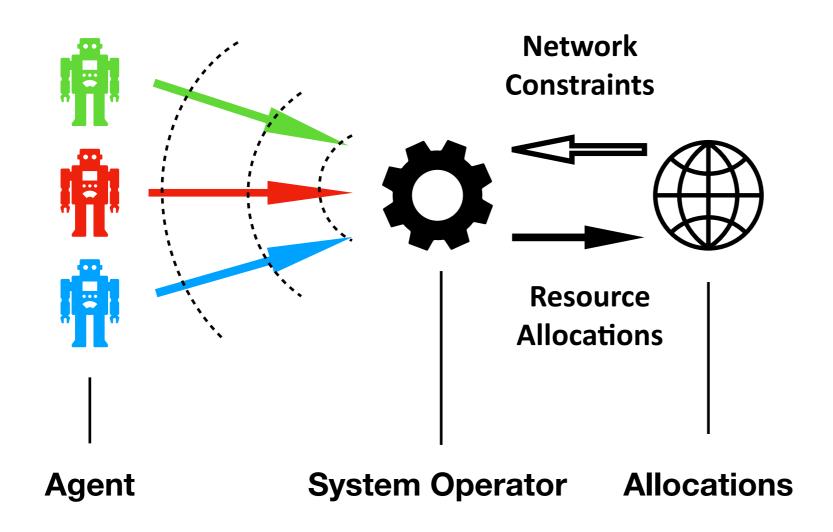




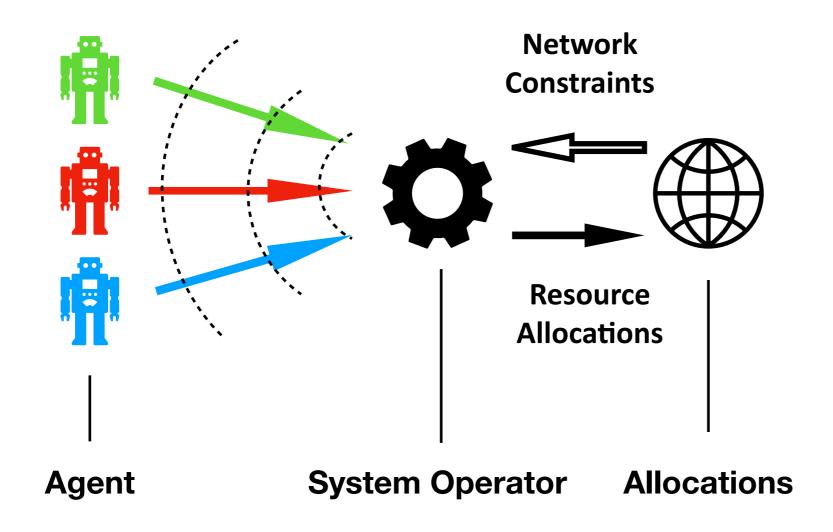




Each agent solves agent problem using preference information and current rate card and submits optimal budget orders.



System Operator collects all budget orders, solves operator problem and broadcasts updated rate card

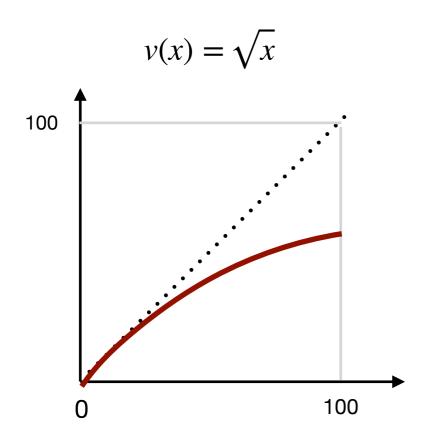


Theorem: At equilibrium system problem with a fixed permutation is solved optimally.

Using Lyapunov stability analysis you can show that the iterative process converges

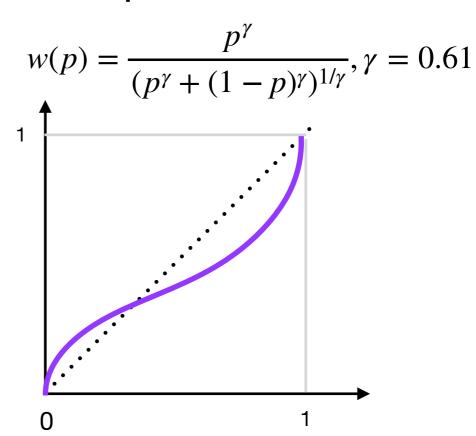
Example

100 agents, 1 link shared by all the agents Link capacity = 100 Mbps



Value function

Deterministic Allocation Social welfare = 100



Probability weighting function

Lottery Allocation Social Welfare 157.91

Winner gets 69.45 Mbps and the rest is equally divided amongst the remaining agents (0.31 Mbps)

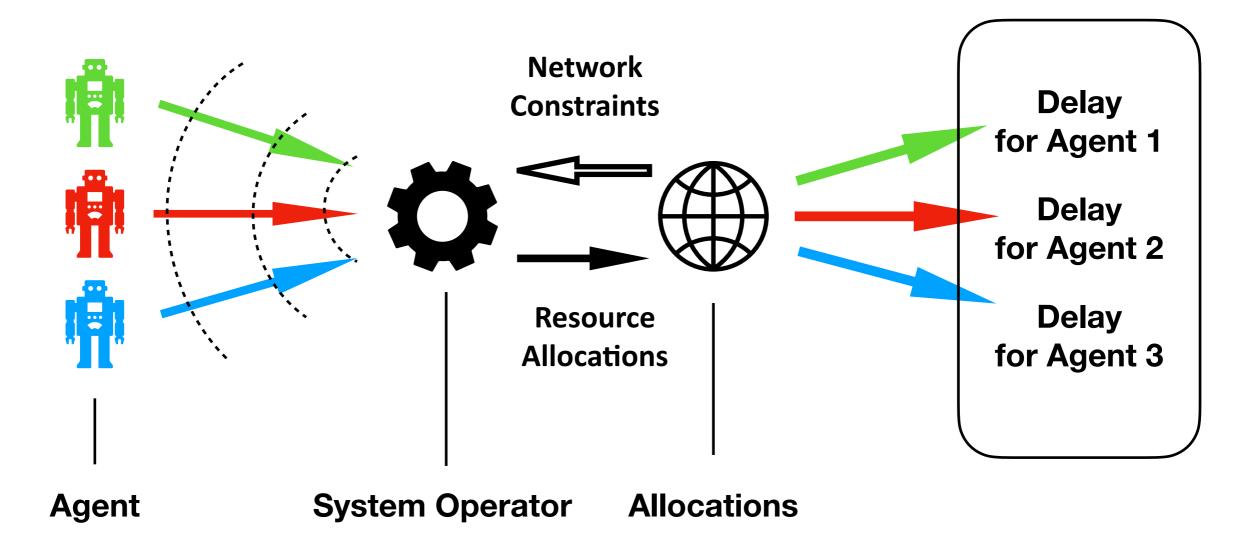
Relaxation

- Relax the permutation matrix to be doubly stochastic matrix
- Convex Opt. problem
- Equivalent to the problem where link constraints hold in expectation (Soft Constraints)
- Can be solved efficiently using market-based pricing

Application to Cloud Computing

- Today's pricing schemes are mostly one price for all job types
- Customers have varying preferences over their job delays
- Multi-tier service: Some jobs are served immediately while others are scheduled for later execution
- Scheduling problem as a resource allocation problem
- Treat tiers as links with capacity constraints
- This viewpoint is particularly well-suited for serverless computing

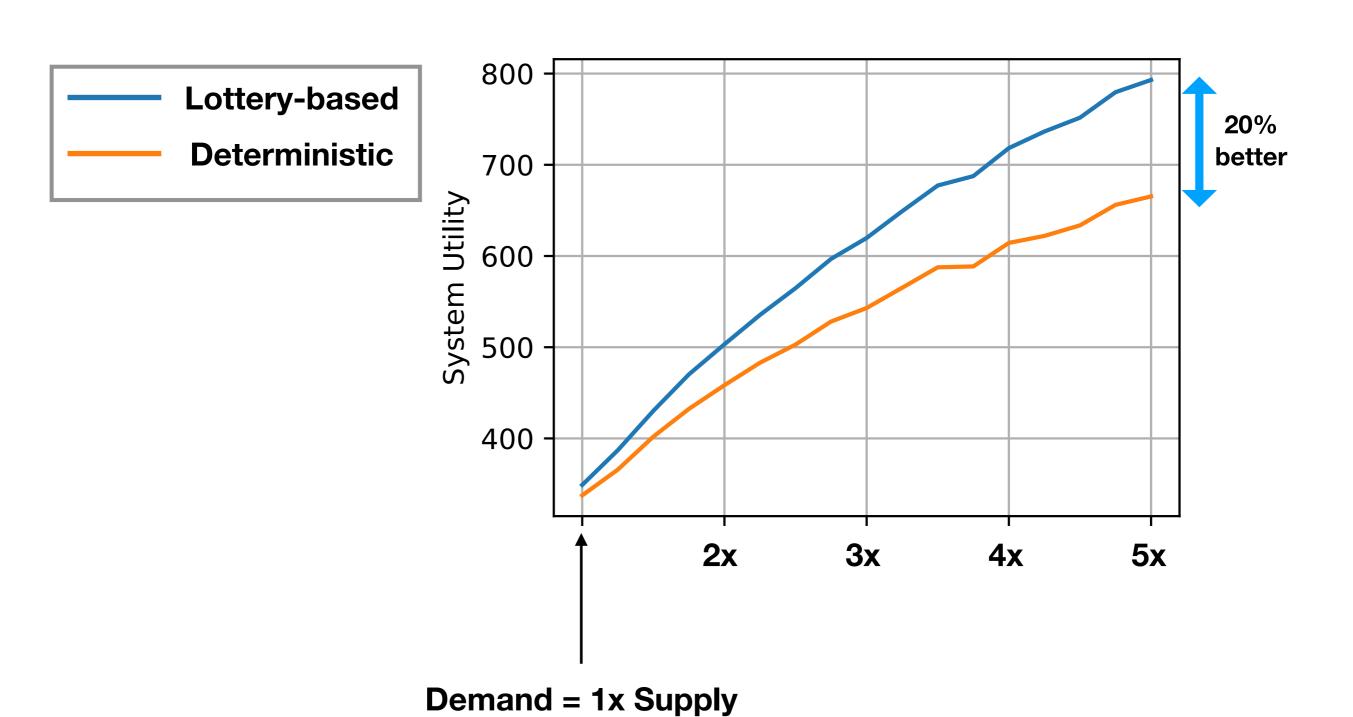
Agent-Operator Decomposition



Agents have preferences over delays (or outcomes) and not on allocations

Under EUT it is okay to consider agents preferences on allocations directly. But not under CPT.

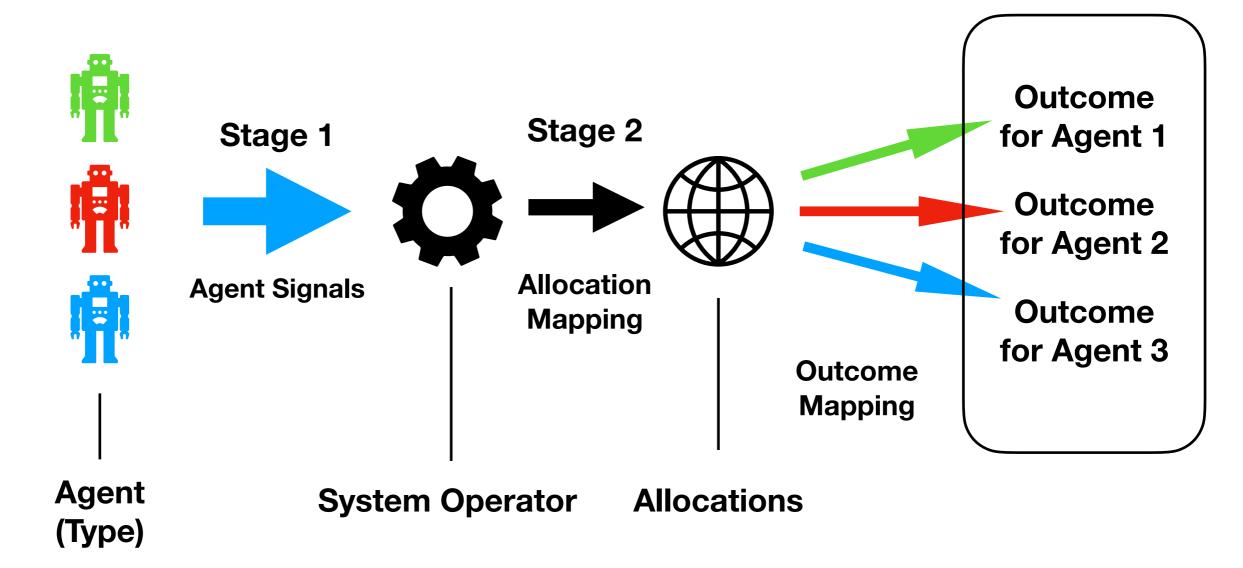
Simulations

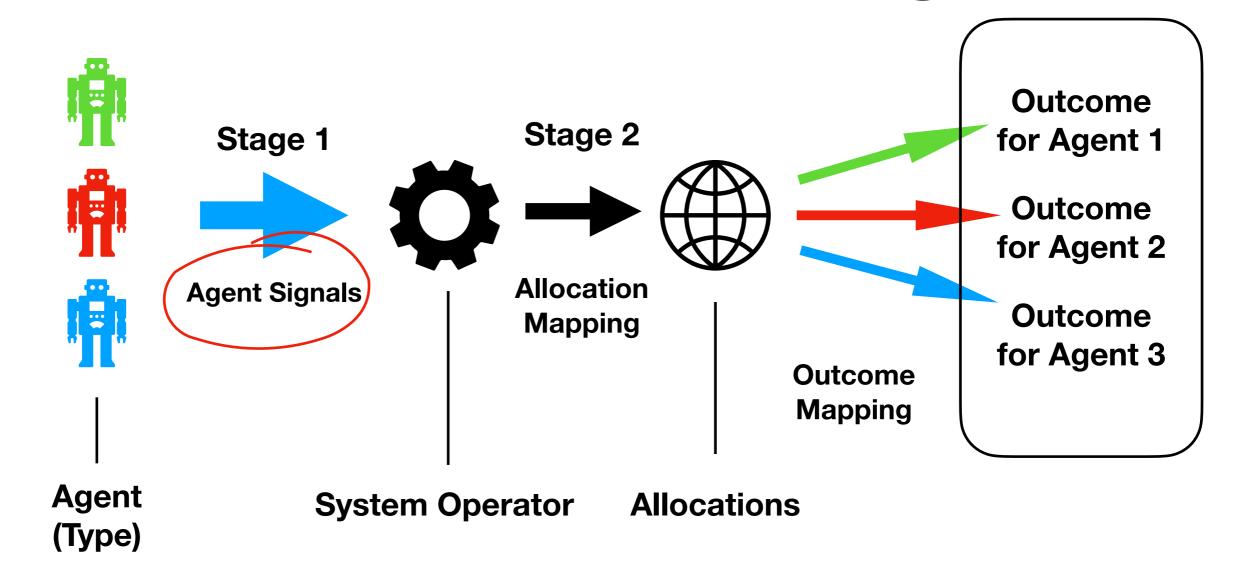


Extending to other avenues

Additional sources of uncertainties

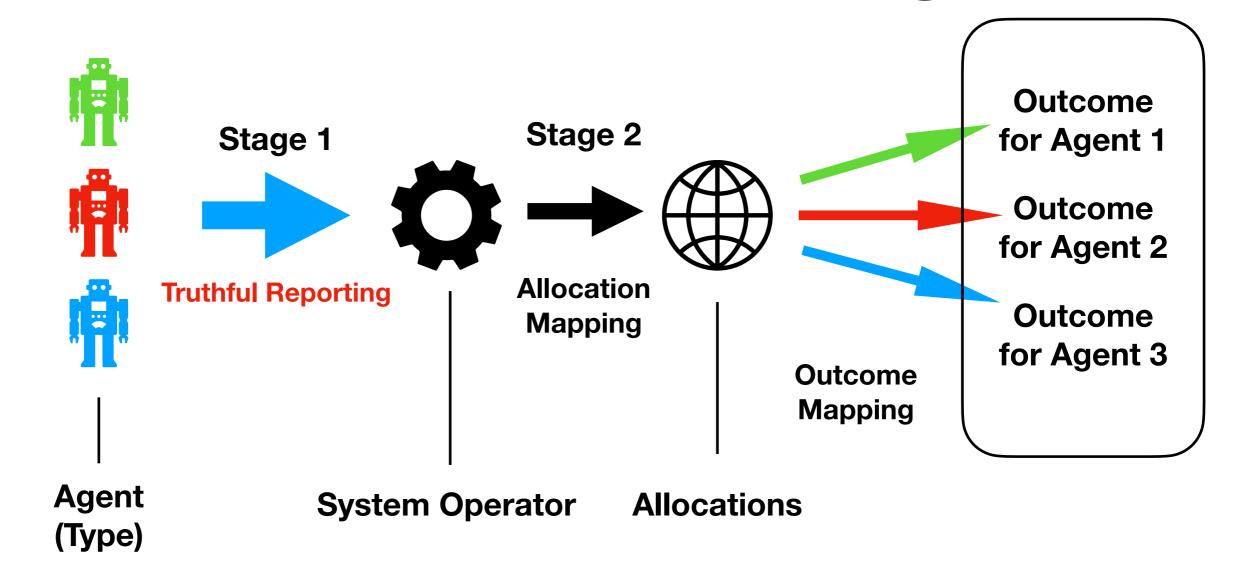
- lack of information about the outcomes
- each agent has uncertainty and beliefs about other agents behavior
- Mechanism Design provides a general enough framework to study these settings
- Traditional applications: Auctions, Principle-Agent problems, Contract Theory, Housing and School allocation
- Modern day applications: Uber, Amazon, Google Ads





Social Choice Function

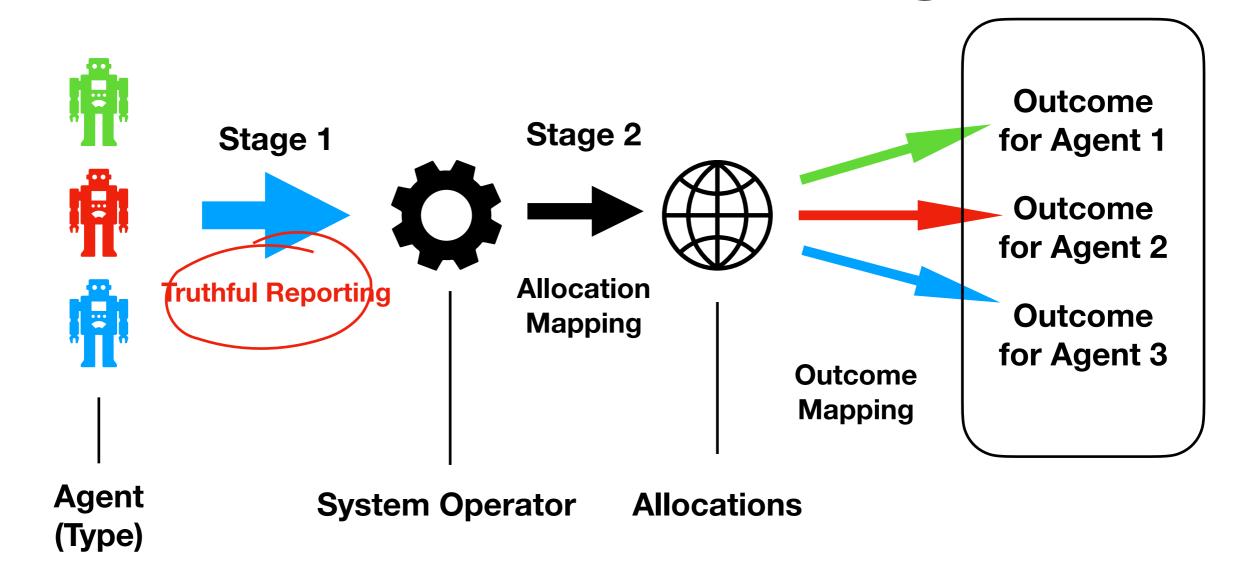
Agent Type Profile Allocation



Under EUT

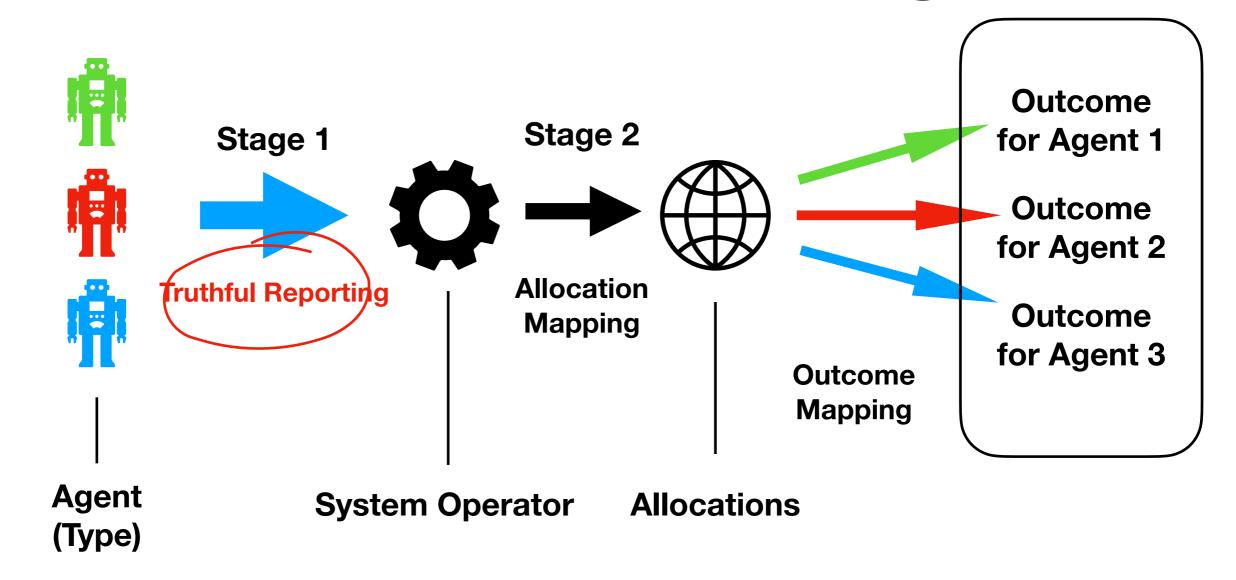
Revelation Principle (Myerson 1981)

- w.l.o.g. assume signal set = type set for each player
- restrict attention to direct truthful mechanisms



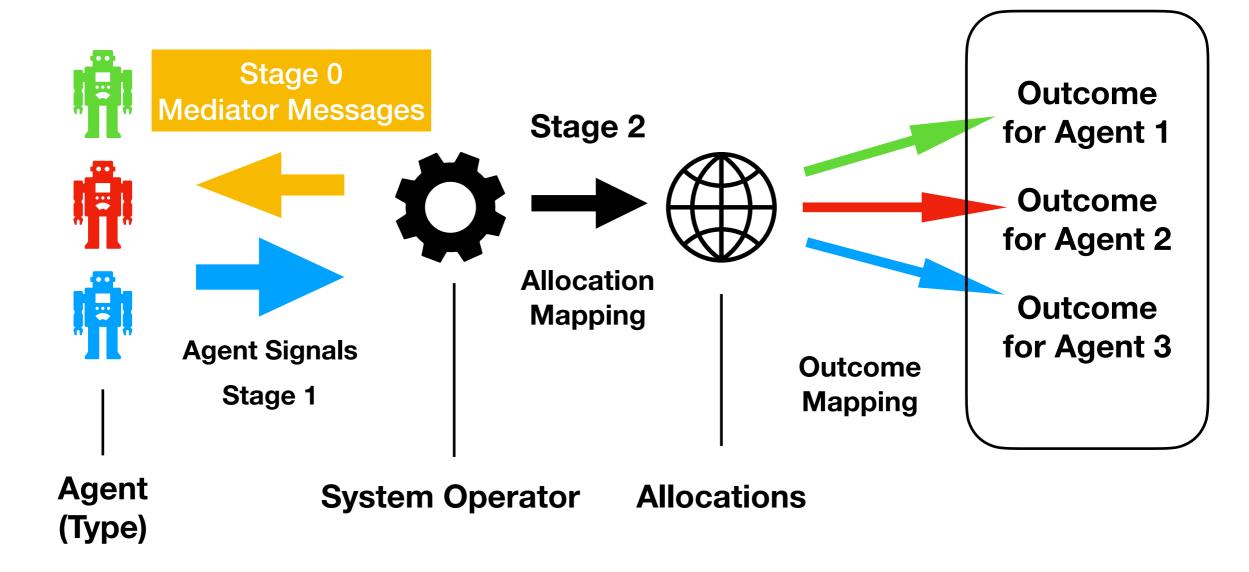
Importance of truthful strategies

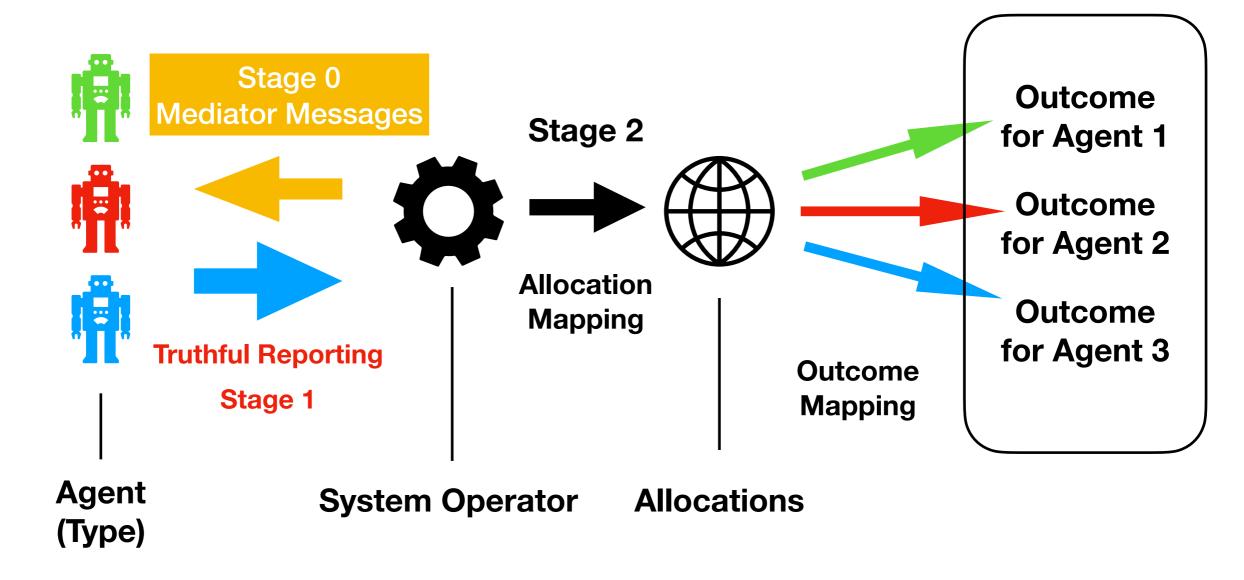
- Limits on information availability
- Computational and cognitive limitations
- Users with different levels of access to information and computation.



Revelation Principle does not hold under CPT

Previously observed to fail in second-price sealed-bid auctions (Karni and Safra 1989)





Revelation Principle (under CPT) recovered

- w.l.o.g. assume signal set = type set for each player
- restrict attention to direct truthful mediated mechanisms

Game Theory with CPT

Non-cooperative games with CPT players

Mediated games with CPT players

CPT Correlated Equilibrium CPT Nash Equilibrium

- Adopt definitions by Keskin 2017
- Establish geometric properties: CPT correlated set can be non-convex and disconnected
- Extend the result by Nau et al: Nash equilibria lie on the boundary of correlated equilibria

[Phade, Anantharam. Decision Analysis 2019.]

Blackbox Equilibrium

- Violation of Betweenness property
- Deliberate choice of randomized actions - Blackbox strategy
- New notions of CPT Nash equilibrium

[Phade, Anantharam. ArXiv 2020.]

Mediated CPT Bayes-Nash

Mediated CPT
Correlated
Equilibrium

Revelation Principle

 Borrowing the idea of mediator to mechanism design we get this result.

- Mediator sends private messages to each agent drawn from a joint distribution.
- Agents observe these signals before playing.
- The Bayes-Nash equilibrium of this game gives rise to an extension of correlated equilibrium notion.
- Appropriate notion for learning in repeated games

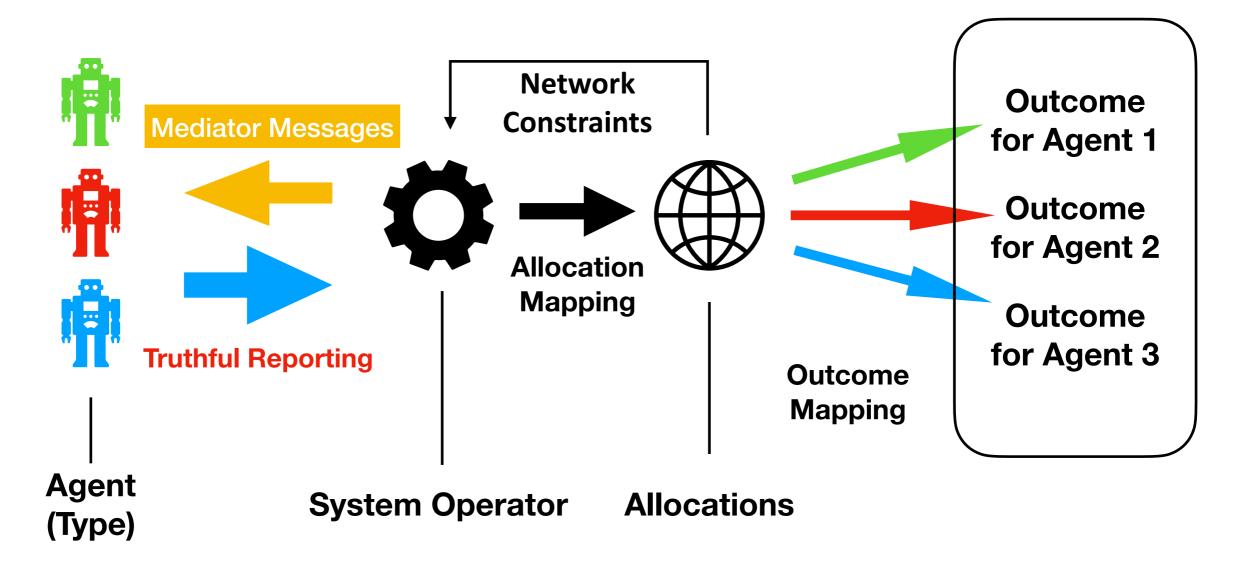
[Phade, Anantharam. DGAA 2021.]

[Phade, Anantharam. ArXiv 2021.]

"If we can agree that the economic problem of society is mainly one of rapid adaptation to changes in the particular circumstances of time and place, it would seem to follow that the ultimate decisions must be left to the people who are familiar with these circumstances, who know directly of the relevant changes and of the resources immediately available to meet them. We cannot expect that this problem will be solved by first communicating all this knowledge to a central board which, after integrating all knowledge, issues its orders. We must solve it by some form of decentralization. But this answers only part of our problem. We need decentralization because only thus can we ensure that the knowledge of the particular circumstances of time and place will be promptly used. But the 'man on the spot' cannot decide solely on the basis of his limited but intimate knowledge of the facts of his immediate surroundings. There still remains the problem of communicating to him such further information as he needs to fit his decisions into the whole pattern of changes of the larger economic system."

-Friedrich Hayek. "The use of Knowledge in Society." (1945)

Role of Communication, Data-Analytics, and Al in Network Economics



- Compare mediator messages with menus shown to customers: available options, corresponding prices, and associated uncertainties.
- Recommendations that are aware of resource constraints and market conditions
- Often solutions coming from theory involve complex signals.
- Repeated interactions leading to data-driven approaches. Using Al to learn preferences and assist decision making and signaling.

Fairness and Ethical Considerations

- Utilitarian approach, i.e. maximize social welfare. CPT allows us to capture perceived happiness.
- Reference point dependence allows us to capture social norms and expectations in groups.
- Lottery-based framework provides a chance for participants with limited budgets even under peak-price conditions.
- Do lotteries try to exploit the agents?

Takeaways

- CPT is a useful tool to capture human preferences in network settings
- Lotteries provide a rich environment and can be useful
 - A mystery solved: traditional theory explains the use of lotteries only when the goods to be allocated are indivisible.
 But lotteries are used much more generally.
- Agent-Operator decomposition is an important way to solve network economics problems.
- ML/Al can provide ways to make these frameworks practical and much more advanced

Thank you for your attention!

Thank you!

Advisor

Committee

Collaborators

Thank you!

BLISS Lab

Thank you!

