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Network Economics

Study of problems where several agents interact with each other
over a network with shared resources

An Emerging Paradigm

e (Centralized control
e Direct-to-consumer services
* Increasing effect of human interactions and decisions

 Limited resources. Expanding the resources is not
always possible

How to allocate resources over these networks while taking user behavior into

account?



Network Economics Today
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We seek market-based solutions e.g. auctions and fixed rate pricing.



This Talk

Capture human behavior using sophisticated models from
psychology

e Tool: Cumulative Prospect Theory

Build mathematical models to provide theoretical insights and
facilitate automation

 Network resource allocation model

o and a pricing scheme

Other Avenues:
e Scheduling in Cloud Computing and Pricing
* Mechanism Design

Future Directions
e Using ML/Al components as a part of these markets



Expected Utility Theory (EUT)

(Von Neumann-Morgenstern 1947)

Lottery

L— probability ‘& 0.2 0.15 0.1 0.25 0.2
outcome 10 5 2 0 -1 -3

1 utility
u(x)
Expected utility of lottery L
U(L) = 0.1u(10) + 0.2u(5) + 0.15u(2) + 0.1u(0) Outcome
+0.25u(—=1) + 0.2u(=3) *

v

Lottery with higher Expected Utility is preferred. Utility function



Allais Paradox
(1953)

Allais
Experiment 1 Experiment 2
Gamble 1A Gamble 1B Gamble 2A Gamble 2B
Winnings Chance  Winnings Chance Winnings Chance Winnings Chance
$1 million | 100% | $1 million | 89% Nothing | 89% Nothing | 90%
Nothing 1% $1 million  11%
$5 million | 10% $5 million | 10%

People often do NOT follow EUT!



Cumulative Prospect Theory (CPT)

(Kahneman - Tversky 1992)




Cumulative Prospect Theory (CPT)

(Kahneman - Tversky 1992)
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(Kahneman - Tversky 1992)
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Cumulative Prospect Theory (CPT)

(Kahneman - Tversky 1992)

w(p)

Suppose r = 0

Gain Loss

02 015 0.1 025 0.2

5 2 0 -1 -3

CPT value of Lottery L
V(L) _ Vgain(L) + VZOSS (L)

V9 (L) = v(10)[w™(0.1)] + v(5)[w™* (0.1 + 0.2) — w™(0.1)]

+v(2)[wT (0.1 4+ 0.2+ 0.15) — w™ (0.1 + 0.2)]

VZOSS(L) _ v(—3)[w_(02)] + v(—l)[w_(OQ + 025) — UJ—(OZ)]



Cumulative Prospect Theory (CPT)

(Kahneman - Tversky 1992)

w(p)

Suppose r = 0

> Gain Loss

oJeleklollinA 0.1 0.2 015 0.1 025 0.2

10 5 2 0 -1 -3

_ CPT value of Lottery L

V(L) = V%" (L) + V'ss (L)

Vgain(L)

v(10)[w™ (0.1)] + v(5)[w™ (0.1 +0.2) — w™*(0.1)]
+v(2)[wT (0.1 4+ 0.2+ 0.15) — w™ (0.1 + 0.2)]

VZOSS(L) _ v(—3)[w_(02)] + v(—l)[w_(OQ + 025) — w_(OZ)]



Cumulative Prospect Theory (CPT)

(Kahneman - Tversky 1992)

w(p)

Suppose r = 0
> Gain Loss
7, — el 0.1 0.2 0.15 0.1 |0.25 0.2
Rank Dependence D
Ordering in outcomes 10 S 2 0 -1 -3
affects the corresponding
decision weights
CPT value of Lottery L
CPT generalizes EUT! V(L) = Voain(L) + V105 (L)

Vgain(L)

v(10)[w™ (0.1)] + v(5)[w™ (0.1 +0.2) — w™*(0.1)]
+v(2)[wT (0.1 4+ 0.2+ 0.15) — w™ (0.1 + 0.2)]

VZOSS(L) _ U(—S)[UJ—(OZ)] + v(—l)[w_(OQ + 025) — UJ_(OZ)]



Kelly Network Model

Bandwidth Allocation over the Internet

Link Capacity
Constraint




Deterministic vs Randomized Allocations

* This literature has mainly focused on deterministic
allocations.

e Quality of Service has another very important aspect:
uncertainty in the allocations

e Different users have different preferences towards
uncertainty

e Do randomized allocations (lotteries) provide an
advantage over deterministic allocations?

* |f yes, does there exist a market-based mechanism to
implement optimum lottery?



Network Model

Bandwidth Allocation over the Internet

Constraint

NE

Agents using
that link

Link Capacity

¢

Marginal Distributions —

Joint Distribution

on the Feasible Region

D e A(F)




System Problem

CPT value of Agent i’s Lottery

v
Maximize Z V(L) Total Social Welfare
i

subjectto D € A(F) Probability Distribution on
Feasibility Region

D, =L,V Marginal Distributions agree
with Lotteries

e System Operator (like Comcast) does not know agent’s CPT
features, namely, the value function and the probability weighting

function

e (Goal: Design market-based mechanism to solve it.



System Problem

Deterministic

Maximize Z v(x)

l

subjectto X € F

Market-based solution (Kelly 1998)

Convex optimization problem

Facilitates of this
problem into several agent
problems and one system
operator problem

Underlies TCP/IP protocol

Achieves optimum solution at
equilibrium

Randomized

Maximize Z V(L)
i
subjectto D € A(F)
D,=L,Vi

Non-Convex because of prob.
weight. func.

Rank dependence introduces
additional complexity



Discretization

e A simplification that goes a long way ...

e Fix a positive integer K and discretize the joint distribution D into K
alternatives, say, 1, 2, ..., [, ..., K.

e One alternative is chosen uniformly at random from these

Feasible Region




Discretization

* Restrict attention to probability weighting jumps

e Separate the permutation structure in the problem

Feasible Region 4

hi(K)[ .
hi(l)I E
> 4

123 4 5 X

Permutation for Agent 1



System Problem

® NP hard
® We can characterize
Discretized System Problem optimum permutation
in terms of Ordered under strong duality
Outcomes and Permutations <. Duality gap Exists

Assume operator knows CPT

features of all the agents Solve using
convex

programming

Fixed Permutation

system problem

Convex Problem 7 Dual Variables

Motivates i
Decomposition a_ _er
Pricing
Market-based Mechanism
Agent Operator
Problems Problem Convex Problems

[Phade, Anantharam. GameNets 2019.]



Ladder Pricing

Budget Order

0 0.2 0.4 0.6 0.8

Rate Card Base 1st Boost 2nd Boost 3rd Boost 4th Boost
$10 $5 $3 $2 $1



Ladder Pricing

Budget Order

$100 $15 $10

0 0.2 0.4 0.6 0.8

Rate Card Base 1st Boost 2nd Boost 3rd Boost 4th Boost
$10 $5 $3 $2 $1



Ladder Pricing

Budget Order
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Ladder Pricing

Budget Order

$10

$100

0

$15
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Rate Card Base 1st Boost 2nd Boost 3rd Boost 4th Boost
$10 $5 $3 $2 $1

You get 13 units of bandwidth



Ladder Pricing

Budget Order

$100 $15 $10

0 0.2 0.4 0.6 0.8 1
Rate Card Base 1st Boost 2nd Boost 3rd Boost 4th Boost
$10 $5 $3 $2 $1

You get 10 units of bandwidth



Ladder Pricing

Budget Order

$10

$100

0

9

o o — —

$15
0.2

. 0.4 0.6 0.8 1
Rate Card Base 1st Boost 2nd Boost 3rd Boost 4th Boost
$10 $5 $3 $2 $1

You get 18 units of bandwidth



Ladder Pricing

Budget Order

$10

$100

0

$15
0.2

. 0.4 0.6 0.8 1
Rate Card Base 1st Boost 2nd Boost 3rd Boost 4th Boost
$10 $5 $3 $2 $1
probability 40% 40% 20% Agent Gain
L= V(L) — 125

outcome 18 units 13 units 10 units CPT value of lottery
minus total budget



Agent-Operator Decomposition

Network
Constraints

T  © S
*

'ﬁ Resource
Allocations

Agent System Operator Allocations




Agent-Operator Decomposition

Network
Constraints

'ﬁ Resource
R Allocations

‘ Rate Card

Agent System Operator Allocations



Agent-Operator Decomposition

Network
Constraints

@
Resource
Allocations

Agent System Operator Allocations

Each agent solves agent problem using preference information and current
rate card and submits optimal budget orders.



Agent-Operator Decomposition

Network
Constraints

@
Resource
Allocations

Agent System Operator Allocations

System Operator collects all budget orders, solves operator problem and
broadcasts updated rate card



Agent-Operator Decomposition

Network
Constraints

@
Resource
Allocations

Agent System Operator Allocations

Theorem: At equilibrium system problem with a fixed permutation is
solved optimally.

Using Lyapunov stability analysis you can show that the iterative process converges
[Phade, Anantharam. GameNets 2019.]



Example

100 agents, 1 link shared by all the agents
Link capacity = 100 Mbps

Y

_ P _
V() = v/x W(p) = Tt = 061

100 ! ]

> >

Value function Probability weighting function
Deterministic Allocation Lottery Allocation
Social welfare = 100 Social Welfare 157.91

Winner gets 69.45 Mbps and the rest is equally divided amongst
the remaining agents (0.31 Mbps)



Relaxation

e Relax the permutation matrix to be doubly
stochastic matrix

e Convex Opt. problem

e Equivalent to the problem where link constraints
hold in expectation (Soft Constraints)

e Can be solved efficiently using market-based
pricing



Application to Cloud Computing

Today’s pricing schemes are mostly one price for all job types
Customers have varying preferences over their job delays

Multi-tier service: Some jobs are served immediately while
others are scheduled for later execution

Scheduling problem as a resource allocation problem
Treat tiers as links with capacity constraints

This viewpoint is particularly well-suited for serverless
computing



Agent-Operator Decomposition

-

~

Network
Constraints Delay
for Agent 1
<=
» Delay
\for Agent 2
Resource Delay
Allocations for Agent 3
Agent System Operator Allocations

Agents have preferences over delays (or outcomes) and not on allocations

Under EUT it is okay to consider agents preferences on allocations

directly. But not under CPT.

[Phade, Gupta, Courtade, Kannan. ArXiv 2020.]



Simulations

800 -
Lottery-based 00,
Deterministic 700 - better
b
5 600 -
=
b
2 500 -
Vp)
400 -

2X 3X 4x 5X

Demand = 1x Supply

[Phade, Gupta, Courtade, Kannan. ArXiv 2020.]



Extending to other avenues

. o 'y
Additional sources of uncertainties « T =

e |ack of information about the outcomes o0

 each agent has uncertainty and beliefs about other
agents behavior

Mechanism Design provides a general enough framework
to study these settings

Traditional applications: Auctions, Principle-Agent
problems, Contract Theory, Housing and School
allocation

Modern day applications: Uber, Amazon, Google Ads



Mechanism Design

4 )

Outcome

Stage 1 Stage 2 for Agent 1

ﬁ » » » Outcome
for Agent 2

Agent Signals Allocation \

Mapp|ng OUtcome

Outcome for Agent 3
‘ Mapping \ J
Agent System Operator  Allocations

(Type)



Mechanism Design

4 )

Outcome

Stage 2 for Agent 1

ﬁ » » Outcome
for Agent 2

Allocation \

'ﬁ' Mapping Outcome

Outcome for Agent 3
‘ Mapping \ J
Agent System Operator  Allocations

(Type)

Social Choice Function

Agent Type Profile » Allocation



Mechanism Design

Outcome
Stage 1 Stage 2 for Agent 1
'ﬁ' » » - OUtcome
for Agent 2
Truthful Reporting Allocation \
Mapp|ng OUtcome
Outcome for Agent 3
‘ Mapping \ J
Agent System Operator  Allocations
(Type)
Under EUT

Revelation Principle (Myerson 1981)
* w.l.0.g. assume signal set = type set for each player
- restrict attention to direct truthful mechanisms




Mechanism Design

Outcome
Stage 1 Stage 2 for Agent 1
ﬁ » » Outcome
for Agent 2
ruthful Reporting Allocation \
Mapping Outcome
Outcome for Agent 3
‘ Mapping \ J
Agent System Operator  Allocations

(Type)

Importance of truthful strategies

* Limits on information availability

e Computational and cognitive limitations
e Users with different levels of access to information

and computation.




Mechanism Design

Outcome

Stage 2 for Agent 1

ﬁ » » Outcome
for Agent 2

Allocation \

'ﬁ' Mapping Outcome

Outcome for Agent 3
‘ Mapping \ J
Agent System Operator  Allocations

(Type)

Revelation Principle does not hold under CPT

Previously observed to fail in second-price sealed-bid auctions

(Karni and Safra 1989)



Mechanism Design

4 )

Outcome
Stage 2 for Agent 1
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Mechanism Design

Outcome
Stage 2 for Agent 1
ﬁ » » Outcome
for Agent 2

Allocation \
'ﬁ Mapping Outcome
Truthful Reporting Outcome for Agent 3

Agent System Operator  Allocations

(Type)

Revelation Principle (under CPT) recovered
* W.l.0.g. assume signal set = type set for each player
- restrict attention to direct truthful mediated mechanisms

[Phade, Anantharam. ArXiv 2021.]



Game Theory with CPT

Mediated games

Non-cooperative games
with CPT players

CPT Correlated

Equilibrium

® Adopt definitions by
Keskin 2017

® Establish geometric
properties: CPT
correlated set can be
non-convex and
disconnected

® Extend the result by
Nau et al: Nash
equilibria lie on the

equilibria

boundary of correlated

[Phade, Anantharam.
Decision Analysis 2019.]

CPT Nash
Equilibrium

|

Blackbox
Equilibrium

® Violation of

Betweenness
property

® Deliberate choice
of randomized
actions - Blackbox
strategy

® New notions of
CPT Nash
equilibrium

with CPT players

Mediated CPT
Correlated
Equilibrium

l

Revelation
Principle

A

e

[Phade, Anantharam.
ArXiv 2020.]

® Borrowing the idea
of mediator to
mechanism design
we get this result.

[Phade, Anantharam. ArXiv 2021.]

® Mediator sends
private messages
to each agent
drawn from a joint
distribution.

® Agents observe

these signals
before playing.

® The Bayes-Nash

equilibrium of this
game gives rise to
an extension of
correlated
equilibrium notion.

® Appropriate notion

for learning in
repeated games

[Phade, Anantharam.
DGAA 2021.]




“If we can agree that the economic problem of society is mainly one of rapid
adaptation to changes in the particular circumstances of time and place, it would
seem to follow that the ultimate decisions must be left to the people who are familiar
with these circumstances, who know directly of the relevant changes and of the
resources immediately available to meet them. We cannot expect that this problem
will be solved by first communicating all this knowledge to a central board which,
after integrating all knowledge, issues its orders. We must solve it by some form of
decentralization. But this answers only part of our problem. We need
decentralization because only thus can we ensure that the knowledge of the
particular circumstances of time and place will be promptly used. But the ‘man on
the spot’ cannot decide solely on the basis of his limited but intimate knowledge of
the facts of his immediate surroundings. There still remains the problem of
communicating to him such further information as he needs to fit his decisions into
the whole pattern of changes of the larger economic system.”

—Friedrich Hayek. “The use of Knowledge in Society.” (1945)



Role of Communication, Data-Analytics, and Al in

Network Economics

l Network

Constraint Outcome
onstraints for Agent 1
ﬁ » » Outcome
Allocation \for Agent 2
'ﬁ' Mapping Outcome
Truthful Reporting Outcome for Agent 3
Mapping \ J
Agent System Operator Allocations
(Type)

4 )

Compare mediator messages with menus shown to customers: available options, corresponding

prices, and associated uncertainties.

Recommendations that are aware of resource constraints and market conditions

Often solutions coming from theory involve complex signals.

Repeated interactions leading to data-driven approaches. Using Al to learn preferences and assist

decision making and signaling.



Fairness and Ethical Considerations

e Utilitarian approach, i.e. maximize social welfare. CPT
allows us to capture perceived happiness.

 Reference point dependence allows us to capture social
norms and expectations in groups.

o |ottery-based framework provides a chance for
participants with limited budgets even under peak-price
conditions.

* Do lotteries try to exploit the agents?



Takeaways

e CPT is a useful tool to capture human preferences in network
settings

e | otteries provide a rich environment and can be useful

e A mystery solved: traditional theory explains the use of

lotteries only when the goods to be allocated are indivisible.
But lotteries are used much more generally.

e Agent-Operator decomposition is an important way to solve
network economics problems.

e ML/AI can provide ways to make these frameworks practical
and much more advanced

Thank you for your attention!



Thank you!

Committee

Collaborators



Thank you!

BLISS Lab






