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Main Challenges

Large scale of operation

User preferences unknown

Learn user preferences and make recommendations

o Exploit structure in preferences (eg. collaborative filtering)

e Learn from interactive feedback (eg. multi-armed bandits,
contextual bandits)

Drawbacks:
e Ignorant of capacity constraints

e Results in overcrowding



Main Challenges

e Price discovery and allocation

o Competitive equilibrium, Walras tatonnement process,
dynamic pricing

e Maximize social welfare

* Envy-free and individually rational
e Drawbacks:

e Assumes complete information

e Assumes users can provide high dimensional responses
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Our Approach

e Collaborative filtering: latent factor models
o Explore-exploit: OFU (optimism in face of uncertainty)

o Equilibrium pricing: Walrasian pricing

First to integrate all three aspects in one algorithm



What our Algorithm Achieves

Has sub-linear social welfare regret across iterations

* maximizing social welfare at each step is not possible since
preferences are unknown

Has sub-linear instability regret from user envy:

e a user is said to have envy if she prefers a non-recommended
item and measured by the difference in reward surplus when
compared to the recommended item

We provide theoretical guarantees



Setup

Modeling User Preferences
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Setup

Interactive recommendation, allocation, and feedback
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A Generic Algorithm

Interactive Learning for Allocation and Pricing (ILAP)

Based on the collected information so far, find the least square
estimate of the reward matrix under the structural conditions
on preferences

Consider confidence set around it with an appropriately
defined metric and radius

Optimistically solve the resource allocation problem with
constraints assuming that the true rewards belong to this set

Present the users with these allocations as recommendations at
the corresponding shadow prices



Setting 1

Contextual Preferences

Each item has a feature vector (known) (dim R)

Each user has a feature vector (unknown) (dim R)

A user-item reward is the linear product of these feature vectors

These structural properties affect the first step in finding least
squares estimate and the radius of confidence set

Result: Avg. social welfare regret and instability regret of order
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Setting 2

Low Rank Preferences

We do not assume the item features to be known

We assume the reward matrix to be of rank R

Result: Avg. social welfare regret and instability regret of order
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Giving user’s an accept/reject choice

Optimism in estimating preferences tends to raise prices

Suppose a user accepts an item only if her reward is more that
the offered price

Then we have to lower the offered prices in proportion to the
width of the confidence set

This reduces the decay of regret in T to be
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ILAP: Interactive Learning for Allocation and Pricing (Our Algorithm)
RWE: Recommendations without Exploration
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Related Work

Combinatorial multi-armed bandits: Audibert et al (2011), Chen
et al (2013), Kveton et al (2015)

Structured Linear Bandits: Combes et al (2017), Lu et al (2021)

Bandits in economics: Liu et al (2020), Johari et al (2021),
Jagadeesan (2021)

Envy-free pricing: Guruswami et al (2005)

Recommendation with capacity constraints: Christakopoulou
(2017), Makhijani (2019)



Future Directions

Show multiple recommendations at once instead of one
Learn from user choice and not require user feedback
Extending to multi-sided markets

Lower bounds on regrets

Maximizing revenue instead of social welfare
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